An Evolutionary Optimizer of libsvm Models
نویسندگان
چکیده
This user guide describes the rationale behind, and the modus operandi of a Unix script-driven package for evolutionary searching of optimal Support Vector Machine model parameters as computed by the libsvm package, leading to support vector machine models of maximal predictive power and robustness. Unlike common libsvm parameterizing engines, the current distribution includes the key choice of best-suited sets of attributes/descriptors, in addition to the classical libsvm operational parameters (kernel choice, kernel parameters, cost, and so forth), allowing a unified search in an enlarged problem space. It relies on an aggressive, repeated cross-validation scheme to ensure a rigorous assessment of model quality. Primarily designed for chemoinformatics applications, it also supports the inclusion of decoy instances, for which the explained property (bioactivity) is, strictly speaking, unknown but presumably “inactive”, thus additionally testing the robustness of a model to noise. The package was developed with parallel computing in mind, supporting execution on both multi-core workstations as well as compute cluster environments. It can be downloaded from http://infochim.u-strasbg.fr/spip.php?rubrique178.
منابع مشابه
Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملSoft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors
Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...
متن کاملRobustness in TDMA Scheduling for Neuron-based Molecular Communication
This paper proposes and evaluates an optimizer for neuronbased body-area nanonetworks (BANNs). The proposed optimizer leverages an evolutionary algorithm to seek the optimal trade-off between communication latency and robustness in TDMA-based neuronal signaling. Simulation results demonstrate that the proposed optimizer efficiently obtains quality solutions and multiobjective analysis is critic...
متن کاملOptimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network
Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...
متن کاملMulti-Objective Hybrid Evolutionary Optimization with Automatic Switching Among Constituent Algorithms
In this work, a multi-objective hybrid optimizer is presented. The optimizer uses several multi-objective evolutionary optimization algorithms and orchestrates the application of these algorithms to multi-objective optimization problems, using an automatic internal switching algorithm. The switching algorithm is designed to favor those search algorithms that quickly improve the Pareto approxima...
متن کامل